Registration is Open for Emerging Contaminants Conference

Join us on May 21-22 for the 2019 Emerging Contaminants in the Environment Conference (ECEC19). Registration will be open until May 3. View the draft agenda on the ECEC19 website.

About the Conference

ECEC19 will be held on May 21-22, 2019, at the Hilton Garden Inn in Champaign, IL. This year the conference will expand beyond the aquatic environment to also include air and soil studies along with effects on human and animal health.

The conference will feature presentations and posters on the latest in emerging contaminant research, policies, and outreach. In addition, there will be plenty of opportunities for discussion and networking with those interested in all aspects of emerging contaminants in the environment.

Researchers, educators, businesses, government officials, regulatory agencies, policy makers, outreach and extension professionals, environmental groups, members of the general public, and medical, veterinary, and public health professionals are encouraged to attend the conference.

The Illinois Sustainable Technology Center and the Illinois-Indiana Sea Grant are cohosting this conference.

Keynote Speakers

  • Thomas Bruton – PFAS Research and Policy Lead, Green Science Policy Institute
  • Robert C. Hale – Professor of Marine Science, Virginia Institute of Marine Science
  • Susan D. Richardson – Arthur Sease Williams Professor of Chemistry, University of South Carolina

Read more about the keynotes.

Panelists

  • Thomas Burton – PFAS Research and Policy Lead, Green Science Policy Institute
  • Iseult Lynch – Professor and Chair of Environmental Nanosciences at the School of Geography, Earth and Environmental Sciences, University of Birmingham
  • Yujie Men – Assistant Professor in Civil and Environmental Engineering at University of Illinois, Urbana-Champaign
  • Katie Nyquist – Principal Planner for the Contaminants of Emerging Concern Initiative at the Minnesota Department of Health
  • Heiko Schoenfuss – Director of Aquatic Toxicology Laboratory and Professor of Anatomy at St. Cloud State University
  • Krista Wigginton – Assistant Professor in the Department of Civil and Environmental Engineering at the University of Michigan

Read more about the panelists.

 

ISTC announces Spring 2019 sustainability seminars

ISTC has announced its schedule of sustainability seminars for Spring 2019. All seminars are held from noon-1 pm in the SJW Conference room at ISTC 1 Hazelwood Dr in Champaign. Metered parking ($1/hr) in the lot; bike parking; and yellow bus stops at Hazelwood and Oak.

The seminars are also broadcast via webinar for those who can’t attend in person. Register for each session using the links below. Archives of previous seminars are available at https://www.istc.illinois.edu/events/sustainability_seminars.

Thursday, February 7
Recent Advancements in Virus Detection and Monitoring
Speaker: Krista Rule Wigginton, Assistant Professor
University of Michigan Department of Civil and Environmental Engineering
Register for the free webinar

Abstract: Viruses are important pathogens that are commonly associated with contaminated water. Norovirus, for example, is a waterborne virus that is responsible for 10x more illnesses in the U.S. than the next most common waterborne pathogen. To address risks of waterborne virus illnesses, drinking water standards include enteric virus reduction requirements; however the utility of these standards is limited in the absence of methods that can demonstrate they are achieved. Viruses are very difficult to concentrate, purify, and identify. Detection typically relies on culture-based or PCR-based methods; however, most viruses are not readily cultured, and their lack of conserved genes and rapid evolution complicates PCR primer development and sequencing efforts. In this presentation, I will report on our work focused on improving virus detection and monitoring in wastewater and drinking water.

Thursday, February 21
Materials, Assembly Approaches, and Designs for Ultrahigh-Efficiency, Full-Spectrum Operation Photovoltaics and their Applications
Speaker: Ralph G. Nuzzo , G. L. Clark Professor of Chemistry, University of Illinois at Urbana-Champaign
Register for the webinar

Abstract: The production of integrated electronic circuits provides examples of the most advanced fabrication and assembly approaches that are generally characterized by large-scale integration of high-performance compact semiconductor elements that rely on rigid and essentially planar form factors. New methods of fabricating micro-scale semiconductor devices provide a set of enabling means to lift these constraints by engendering approaches to device configurations that would be impossible to realize with bulk, wafer-scale materials while retaining capacities for high (or altogether new forms of) electronic and/or optoelectronic performance. An exemplary case of interest in our work includes large-area integrated electro-optical systems for photovoltaic energy conversion that can provide a potentially transformational approach to supplant current technologies with high performance, low cost alternatives. In this talk I will highlight progress made in the collaborative research efforts that illustrate important opportunities for exploiting advances in optical and electronic materials in synergy with physical means of patterning, fabrication, and assembly to advance capabilities for photovoltaic energy conversion and highlight emerging applications for new materials and unconventional device form factors in high efficiency energy conversion technologies. Of particular interest are the materials, and new understandings of science, that will allow an efficient utilization of the full solar resource.

Thursday, March 7
Removal of Perfluoroalkyl Substances (PFAS) from Water Using Tailored and Highly Porous Organosilica Adsorbents
Speaker: Paul Edmiston ,Theron and Dorothy Peterson Professor of Chemistry and Analytical Chemist, The College of Wooster (Ohio)
Register for the free webinar

Abstract: Porous organosilicas with specific surface chemistries were developed as adsorbents for the selective removal of either perfluoroalkyl surfactants (PFASs) from water. Swellable organically modified silica (SOMS) materials were created that incorporated cationic and fluoroalkyl groups with the hypothesis that intermolecular interactions specific to PFASs would improve adsorption affinity and capacity. SOMS materials are useful in adsorbent design since they possess: i) the ability to swell to creates a continuous mesoporous structure, ii) a surface chemistry that can be tailored through synthesis or incorporation of polymer coatings to the pores, and iii) chemical stability to allow for regeneration in place. Adsorption kinetics, adsorption isotherms, and column breakthrough experiments were used to measure performance for a range of PFASs with variable chain length and chemical identity (PFDA, PFNA, PFOA, PFHpA, PFHxA, PFOeA, PFBA, PFOSA, PFxHs, PFOSA, and PFOSaAm). Organosilica materials show promise for allowing rational design of adsorbents used for remediation of PFAS impacted water. Adsorption mechanisms unique to SOMS will be presented in the context of treatment of wide range of water solutes for those with general interest in water purification technology.

Thursday, March 28
Modern Materials: New Methods in Manufacturing and Remediation
Speaker: Adam M. Feinberg, postdoctoral researcher, University of Illinois Autonomous Materials Systems (AMS) Group
Register for the free webinar

Abstract: This seminar will discuss topics at the beginning and the end of the material lifecycle. At the beginning of the material lifecycle, a new material manufacturing method will be discussed – morphogenic manufacturing, i.e. the generation of pattern and structure without machining or molding. Unstable reaction propagation during frontal ring-opening metathesis polymerization (FROMP) of dicyclopentadiene (DCPD) has been harnessed to generate spatially-resolved patterns in pDCPD resins. Autonomous color pattern development, pattern characterization and tunability, and applications to real-world systems will be discussed. The second section of this talk will center on the end of the material lifecycle. Cyclic poly(phthalaldehyde) (cPPA), an attractive transient material which rapidly depolymerizes upon activation, has been used to produce transient bulk materials. Topics will include advances in bulk processing of cPPA, mechanistic insights learned along the way, and the future of this stimulus-responsive polymer.

Thursday, April 18
PFAS remediation at MSU‐Fraunhofer: Electrochemical destruction in wastewater and landfill leachates using boron‐doped diamond electrodes
Speaker: Cory A. Rusinek – Scientist,  Michigan State University‐Fraunhofer USA, Inc. Center for Coatings and Diamond Technologies
Register for the free webinar

Abstract: Boron‐doped diamond (BDD) electrodes have shown promise over the last decade for contaminant degradation with a number of studies showing its ability to degrade PFASs. The BDD material provides a combination of rigidity, high oxygen over‐potential, and overall electrode lifetime, which makes it an attractive option for an electrochemical treatment system. This presentation will cover the basic and applied research findings of using electrochemical oxidation (EO) with BDD electrodes to destroy PFAS in wastewater and other complex samples such as landfill leachates and wastewaters. Various complimentary treatment technologies for PFAS remediation will also be addressed.

 

2019 Emerging Contaminants in the Environment Conference announces keynote speakers

Keynote speakers for the 2019 Emerging Contaminants in the Environment conference have been announced. The conference will be held on May 21-22, 2019, at the Hilton Garden Inn in Champaign, IL. This year the conference will expand beyond the aquatic environment to also include air and soil studies along with effects on human and animal health. Conference organizers are accepting poster presentations through February 4.

The keynote speakers are:

Getting Ahead of Emerging Contaminants with the Class Concept

Thomas Burton – PFAS Research and Policy Lead, Green Science Policy Institute

Thomas Bruton received his Ph.D. in environmental engineering at UC Berkeley, where his research focused on using in-situ chemical oxidation for remediation of chemical contaminants, including PFAS, in soil and groundwater. In 2017, Tom joined the Green Science Policy Institute, which works collaboratively with partners in academia, government, business, and the nonprofit sector to reduce the use of harmful chemicals in products.  Tom currently leads the Institute’s research and policy work on PFAS.  He is the author of several peer-reviewed papers on PFAS, and is frequently interviewed by the news media.

Microplastics: A Global, Multi-Media Concern

Robert C. Hale – Professor of Marine Science, Virginia Institute of Marine Science

Rob Hale’s research focuses on the sources, multi-media fate, bioavailability and effects of persistent, bioaccumulative & toxic (PBT) pollutants.  Recent interests include flame retardants and microplastics. Matrices of concern have ranged from local fish tissues and sediments, Antarctic wastewater sludge, plastics, to indoor & World Trade Center dust. Over the last 30 years he has published >100 journals articles, which have been cited >7000 times.

Rob was born in Detroit, MI.  He received bachelor degrees in both chemistry and biology (Wayne State University), as well as a Ph.D. in Marine Science (William & Mary). He initially worked as a Research Environmental Chemist for Mobil Corp. in Princeton, NJ, before returning to VIMS, where he is now a Professor in the Dept. of Aquatic Health Sciences.

Emerging Contaminants: State of the Art and New Discoveries

Susan D. Richardson – Arthur Sease Williams Professor of Chemistry, University of South Carolina

Biography:  Susan D. Richardson is the Arthur Sease Williams Professor of Chemistry in the Department of Chemistry and Biochemistry at the University of South Carolina.  Prior to coming to USC in January 2014, she was a Research Chemist for several years at the U.S. EPA’s National Exposure Research Laboratory in Athens, GA.  Susan is the recipient of the 2008 American Chemical Society Award for Creative Advancements in Environmental Science & Technology, has received an honorary doctorate from Cape Breton University in Canada (2006), and was recently recognized as an ACS Fellow (2016).  Susan was also recently elected as the Vice President/President Elect for the American Society for Mass Spectrometry.

 

Upcoming ISTC Sustainability Seminar: In-situ Investigation of Subsurface Porous Media Processes: Microfluidics and Chemical Imaging

The final ISTC seminar of the fall semester,  In-situ Investigation of Subsurface Porous Media Processes: Microfluidics and Chemical Imaging, is scheduled for November 8 from noon-1 pm.

Rajveer Singh, Research Associate at the University of Illinois’ Beckman Institute, will discuss the design of a 2D- microfluidic experimental flow bed, based on real geo-materials as opposed to engineered materials in traditional micromodels. He will explain how he’s using chemical imaging (Raman and Infrared spectroscopy) methods for in-situ characterization of biogeochemical reactions in the flow cells, as well as alternate analytical techniques in environmental engineering.

The seminar will be held in the conference room at ISTC (1 Hazelwood Dr, Champaign). Metered parking ($1/hr) is available in the lot. We also have bike parking and are near the MTD Yellow route bus stop at Hazelwood and Oak.

If you are unable to attend in person, you can register for the webinar broadcast at https://attendee.gotowebinar.com/register/1517546341449737986.

Archived videos and links to slide presentations are available on the ISTC web site. Previous seminars from this semester include:

  • Oxidative Properties of Ambient Particulate Matter – An assessment of the relative contributions from various aerosol components and their emission sources — Presented by Vishal Verma,  Assistant Professor, Department of Civil and Environmental Engineering, College of Engineering, University of Illinois at Urbana-Champaign
  • Enhanced Sorption as a Means to Sequester PFAS — Presented by Matt Simcik – Associate Professor, Division of Environmental Health Sciences, University of Minnesota
  • Becoming a More Sustainable Craft Brewer – Nice to do or business imperative? — Presented by John Stier – Sustainability Mentor, Brewers Association
  • Looking Ahead at Solar Panel Recycling in Illinois — Presented by Nancy Holm, Assistant Director, and Jennifer Martin, Environmental Program Development Specialist, both from the Illinois Sustainable Technology Center

 

Call for Abstracts for the 2019 Emerging Contaminants in the Environment Conference now open

You can now submit abstracts for the 2019 Emerging Contaminants in the Environment Conference.

Abstracts are requested for oral and poster presentations on all aspects of emerging contaminants in the environment, including research, public health, policy, management, outreach, and education. The conference will include sessions on:

  • Per- and polyfluoroalkyl substances (PFASs) (including PFOS, PFOA, & related compounds)
  • Pharmaceuticals and personal care products (PPCPs) (including naturally occurring hormones)
  • Plastics and microplastics (including microfibers)
  • Other emerging contaminants

Visit the conference web site to submit your abstract or use the links below:

Registration will open in February 2019. Registration includes conference admission and detailed conference program. In addition, it includes breakfast and lunch on the day(s) that you register, hors d’oeurves at the poster session (May 21), and a networking mixer at 5-7 pm on May 20 at the Pavilion Lounge in the Hilton Garden Inn.

 

University YMCA announces August 2018 collection days for Dump & Run sale

The University YMCA has announced August 2018 collection days for its annual Dump & Run Sale.

Drop Off Collection Dates & Times

  • August 14, 15, 16, and 17 from 9am-3pm
  • late drop off day Wednesday August 15: 9am-7pm
  • Drop off hours Saturday August 18: 9am-noon

They do NOT accept TVs, non-working electronics, sofa beds, and any chemicals. See  https://universityymca.org/dump_and_run/ for full list. Free pick-up day for furniture and bikes: August 8 and 9 from 9am-4pm. Request a pickup.

Sale Dates

Located at the Stock Pavilion, 1402 W. Pennsylvania Ave.

Saturday, August 25, 2018
8:00 a.m. – 3:00 p.m. $3 admission
International U of I Students get in free with ticket.

Sunday, August 26, 2018
11:00am – 2:00 p.m.: $3 bag sale and 1/2 price furniture
2:30-3:00 p.m.: “Free sale”

Want to shop early? Volunteer 6+ hours for first dibs during the August pre-sale! Sign up today.

Looking for more places in Champaign-Urbana that accept donations? See the C-U Donation Guide.

From PFASs to Plastics, Earth’s Waters Need Our Help

TheISTC Director Kevin OBrien chats with conference attendees Yu Feng-Lin (ISGS) and Dr. Xuefei Zhou (Tongji University, China) Illinois Sustainable Technology Center, Illinois-Indiana Sea Grant, and the Department of Civil and Environmental Engineering at the University of Illinois co-hosted the 2018 Emerging Contaminants in the Aquatic Environment Conference (ECACE18) which  was held on June 5-6 in Champaign, IL. The third annual conference highlighted research, education, and policies related to recently detected emerging contaminants and chemicals that are re-emerging as concerns.

This year’s conference focused on a variety of specific issues ranging from PFASs and microplastics to pharmaceuticals and personal care products (PPCPs), as well as many other types of emerging contaminants found in water and the environment.

PFASs, or per- and polyfluoroalkyl substances, are a group of man-made chemicals that are typically found in fire-fighting foams, water- and stain-resistant textiles, and non-stick cookware. They were described by one of the keynote speakers, Dr. Rainer Lohmann who is professor of oceanography at University of Rhode Island and director of a new Superfund Research Center on PFASs, as being “an even bigger environmental problem than PCBs”. PCBs or polychlorinated biphenyl compounds have been a major contaminant in soil, water, and air since the 1970s and are still being cleaned up from old industrial sites and other areas.  PFASs are as persistent as PCBs, bioaccumulate, and are even more soluble in water than PCBs. Dr. Lohmann went on to discuss how PFASs have been found hundreds of feet below the surface of the oceans and have moved through air and water to remote areas such as the Arctic.

The conference not only featured national speakers such as Dr. Lohmann and presenters from as far away as Florida and California, but also international speakers. They included:

  • keynote speaker Dr. Stefan Krause from the University of Birmingham in the UK who discussed multi-contaminant interactions between aquifers and rivers;
  • keynote speaker Dr. Xuefei Zhou from Tongji University in China, who gave an overview of the problem of pharmaceutical pollution in China and potential advanced technology treatment options; and
  • Dr. Matt Taylor from the Port Stephens Fisheries Institute in New South Wales, Australia, whose research examines PFAS contamination in estuarine fisheries.

Prairie Research Institute scientists from ISTC, the Illinois State Water Survey, and the Illinois State Geological Survey also presented their research results on microplastics and PPCPs detected in karst groundwater in Illinois. This widespread participation of researchers, educators, and policy makers from across the globe illustrates the ubiquitous nature of emerging contaminants in water throughout the world and emphasizes that it will take a collective effort by all of us to solve these pollution issues.

The videos of the 3 keynote presentations will be available on the ISTC website within the next two weeks.

#BeatPlasticPollution on World Environment Day

Today is an important “holiday” of sorts for those of us who are sustainability professionals. On this day in 1972, the United Nations Conference on the Human Environment, held in Stockholm Sweden, began (June 5-16, 1972). The purpose of that conference was to discuss human interactions with the environment, as well as encouraging governments and international organizations to take action related to environmental issues and providing guidelines for such action. This was the UN’s first major conference on international environmental issues, and it culminated in what’s commonly called the “Stockholm Declaration”—the first document in international environmental law to recognize the right to a healthy environment. Two years later, in 1974, the first World Environment Day was held on June 5 with the theme of “Only One Earth.” Since then, World Environment Day has been celebrated annually on June 5th. Each year has a theme around which activities center, and beginning in the late 1980s, the main celebrations began to rotate to different cities around the globe. Learn more about the UN Conference on the Human Environment at https://sustainabledevelopment.un.org/milestones/humanenvironment and the history of World Environment Day at http://worldenvironmentday.global/en/about/world-environment-day-driving-five-decades-environmental-action.

This year’s World Environment Day theme, chosen by the host nation, India, (New Delhi is the host city) is “beating plastic pollution,” with the tagline “If you can’t reuse it, refuse it.” According to the World Environment Day web site: “While plastic has many valuable uses, we have become over reliant on single-use or disposable plastic – with severe environmental consequences. Around the world, 1 million plastic drinking bottles are purchased every minute. Every year we use up to 5 trillion disposable plastic bags. In total, 50 per cent of the plastic we use is single use. Nearly one third of the plastic packaging we use escapes collection systems, which means that it ends up clogging our city streets and polluting our natural environment. Every year, up to 13 million tons of plastic leak into our oceans, where it smothers coral reefs and threatens vulnerable marine wildlife. The plastic that ends up in the oceans can circle the Earth four times in a single year, and it can persist for up to 1,000 years before it fully disintegrates. Plastic also makes its way into our water supply – and thus into our bodies. What harm does that cause? Scientists still aren’t sure, but plastics contain a number of chemicals, many of which are toxic or disrupt hormones. Plastics can also serve as a magnet for other pollutants, including dioxins, metals and pesticides.”

To combat the environmental and human health issues associated with the global addiction to single use plastics, the UN Environment Programme is encouraging people to join the global game of #BeatPlasticPollution tag. Here’s how to play:

  1. Choose which type of single-use plastic you’re ready to give up.
  2. Take a selfie (photo or video) showing yourself with the reusable alternative that you’re ready to embrace.
  3. Share your selfie on social media and “tag” three friends, businesses or high-profile people to challenge them to do the same within 24 hours. Be sure to use the #BeatPlasticPollution hashtag and mention @UNEnvironment.

So what single use plastic item will you pledge to give up today—plastic straws, disposable plastic shopping bags, disposable coffee pods, plastic water bottles, or something else? For inspiration, see http://worldenvironmentday.global/en/get-involved/join-global-game-beatplasticpollution-tag.

Image of 2018 World Environment Day poster promoting #BeatPlasticPollution Tag, outlining the steps for the global game listed in this blog post.

This post was written by Joy Scrogum, ISTC Sustainability Specialist, for the Great Lakes Regional Pollution Prevention Roundtable (GLRPPR) Blog.

PFASs: Complex Chemicals that Could Cause Catastrophic Contamination

WRITTEN BY: Margaret Golden, ISTC staff

When we think of chemicals that could be on our food, we usually think of the pesticides that are used to eliminate pests. We rarely think of the cookware that we use to prepare it. Maybe we should start.

One of the most common ways that people come in contact with chemicals called per- and polyfluoroalkyl substances (PFASs) is through nonstick cookware. PFASs are a collection of man-made chemical compounds that include PFOA, PFOS, and newer GenX chemicals. They were created in the mid-twentieth century and have been used in manufacturing of various products ever since. They’re popular because they don’t degrade and can make products stain-resistant, waterproof, or non-stick. Because of their popularity, they have managed to make their way into water systems and living organisms through leaching and contamination. In addition to cookware, you can find PFASs in a variety of food packaging, household products, clothing items, fire-fighting foams, industrial waste, and drinking water. They also accumulate in the tissue of living organisms, including humans.

The prevalence of PFASs in the environment is a concern because they have been proven to harm both the environment and human health. PFASs are stable molecules, which make them resistant to most treatment methods. This resistance to breakdown means they stay in any living organisms that they come in contact with and can accumulate in the body over time. Additional research has shown that these chemicals can lead to a wide range of adverse health effects, which include immune system deficiencies, low infant birth weights, cancer, thyroid hormone distribution, developmental and liver problems, and potentially many more. Water contamination specifically is becoming a large concern. Drinking water in two Detroit suburbs has tested positive for PFAS contamination. PFASs also have been detected in several other of Michigan’s drinking water sources such as waterways and lakes. It is clear that PFAS are increasingly becoming more of a problem for our health and the environment.

Thanks to the PFOA Stewardship program, most PFASs production has been phased out in the United States. However, people can still come in contact with them through imported goods because they are not yet banned internationally. In addition, companies in the U.S. are still producing next generation PFASs, called GenX. These compounds are found in firefighting foams and food packaging. Because of that, further research on these chemicals is being done all over the country and world.

The Illinois Sustainable Technology Center (ISTC) has teamed up with researchers at the University of Illinois at Urbana-Champaign Department of Civil and Environmental Engineering and the University of California at Riverside to combat this issue and work toward a solution. Researchers from each university are currently investigating the effects of cobalt (Co)-catalyzed defluorination to degrade PFASs. ISTC is working to connect the PFAS research community and increase public awareness through seminars and conferences surrounding research findings.

The first conference will take place in the beginning of June. ISTC will be collaborating with the Illinois-Indiana Sea Grant and the Department of Civil and Environmental Engineering to hold the 2018 Emerging Contaminants in the Aquatic Environment Conference. Be sure to mark your calendars and register online if you’re interested. One speaker to specifically look forward to is Rainer Lohmann, a professor of Oceanography from the University of Rhode Island, who will be doing a keynote presentation on PFASs. With this conference and series of seminars, ISTC hopes to help eliminate the use of PFASs and help to find more sustainable replacements.