New Year’s Reflections and Resolutions

The new year is a good time to reflect on the previous year’s accomplishments, as well as make plans for the year ahead. Last year was a successful one for ISTC’s researchers. They were awarded five out of the five grants they submitted to Department of Energy, as well as one from Illinois-Indiana Sea Grant. They include:

  • Researchers Nandakishore Rajagopalan and Kevin OBrien’s effort to examine the scalability of Rajagopalan’s patented waste heat coupled forward osmosis (FO)-based water treatment system, Aquapod©, to improve wastewater quality and reduce water usage in a coal-fired +500 megawatt power plant.
  • A public-private partnership that demonstrates the feasibility of producing animal feed and/or biofuels at a significantly lower cost. The project combines technologies for bio-energy production that have been developed at ISTC in collaboration with HeliosNRG, headquartered in East Amherst, NY.
  • A large pilot scale test of technology to remove CO2 from power plant flue emissions. ISTC partnered with two multinational companies, Linde and BASF, to develop a new solvent based system to capture CO2 from power plants. They have partnered with Affiliated Engineers Inc. (AEI) and Affiliated Construction Services (ACS), which have extensive experience with designing and building systems for power plant applications. The team led by ISTC received $850,000 in spring 2018 for Phase I of the pilot testing project, which involves designing a 10 MW capture system that would be retrofitted to a central Illinois power plant. The group plans to compete for subsequent phases, which could lead to the development of a supply chain for captured CO2.
  • Advancing carbon capture absorption technology from lab to bench scale. ISTC has been assisting with an Illinois State Geological Survey lab-scale project to develop a biphasic CO2 absorption process (BiCAP) with multiple stages of liquid-liquid solvent phase separation, which increases carbon capture capacity. ISGS and ISTC have received an additional $3 million to conduct a three-year bench scale (40 KWe) study of their BiCAP technology.
  • Validating two innovative technologies that have the potential to significantly reduce flue gas aerosol concentrations from large-scale coal-fired power production. The technologies will be tested at the University of Illinois Abbott Power Plant. The results will be used as a benchmark for comparing their performance and cost to those of existing options.
  • An expansion of on-going research being conducted by John Scott and his team. Through funding from the Hazardous Waste Research Fund and the Annis Water Resource Institute at Grand Valley State University, they are studying the effects of microplastic type and deployment time in Lake Muskegon sediments and the water column on sorption of persistent organic pollutants (POPs) to microplastic particles. The investigation includes legacy contaminants like chlorinated pesticides, polybrominated biphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). New funds from Illinois-Indiana Sea Grant will allow the team to broaden their scope to study the role of microplastics as a carrier of PFAS in water and sediment.

Read more about these and other projects in ISTC’s 2018 annual report. If you’re looking for suggestions on making this year more sustainable, check out some of our blog posts from 2018.

PRI Researchers Gather in Australia for Top GHG Control Conference

Nine Prairie Research Institute (PRI) carbon capture, utilization and storage (CCUS) researchers traveled to Melbourne, Australia in October for the Greenhouse Gas Control Technologies Conference 14, the field’s leading biennial scientific gathering, sponsored by the 30-nation Energy Technology Network.

gas separation test facility for CO2 capture
The $100 million CO2CRC gas separation test facility in Otway, Australia is developing new membrane materials for use in capturing purified carbon dioxide at a high- concentration natural gas well. This apparatus demonstrates the ability to test lab scale, flat membrane sheets and single fibers of hollow fiber membranes.

While at the conference, they visited Australia’s major CCS center, the Otway National Research Center. Otway’s CO2CRC gas separation test facility is developing membranes and techniques for CO2 storage, according to ISTC Director Kevin OBrien.

OBrien added that Dr. Abdul Qader, CO2CRC’s facilities manager, explained new strategies for separating CO2 from methane. “This would be a major driver for the natural gas industry in the Asia-Pacific region,” OBrien explained.

“They also have the ability to test new sorbents as part of their research into pressure swing absorption,” he said.

PRI is also a major player in technology development for CCUS. At ISTC, research focuses on the development of a large-scale U.S. carbon capture pilot at a working coal-fired power plant. Illinois State Geological Survey (ISGS) researchers have developed expertise in sequestration of carbon dioxide in deep rock formations.

Because global demand for fossil fuels is not likely to decline soon, technologies must be developed to reduce carbon emissions by capturing, storing, and finding beneficial ways to use the waste gas, OBrien said. Capture requires a lot of energy and work at PRI and CO2CRC both search for better capture efficiency to lower its cost.

Work is underway worldwide to perfect a wide variety approaches. Successful commercialization of any of these technologies could be a game changer for climate change efforts because most of the world’s economies will continue using coal and other fossil fuels for the foreseeable future, said OBrien.

team of researchers at Australia conference
PRI CCUS researchers (left to right) Chris Korose, Randy Locke, Kevin OBrien, Sallie Greenberg, Scott Frailey, Vinod Patel, Nick Malkewicz (of Projeo Corporation), and Lance Schideman. Steve Whittaker and Keri Canaday (not pictured) also attended meeting.

The Interesting World of Solar Panels

WRITTEN BY: John Mulunda, ISTC intern

Can you guess which energy source has had an average annual growth of 59% in the past decade? If you guessed solar energy then you’re right. Solar energy’s sustained annual growth is due to advances in module technology creating competitiveness with other energy technologies, as well as the decline in soft costs for residential and small commercial installations.   

About Solar Panels

Simply put, solar panels are devices that turn the sun’s light into electricity. Each solar panel is made up of multiple cells connected/wired together to create the necessary electrical power needed for the application. Most solar panels on the market today are made from silicon, a semiconducting material. Each cell contains a semiconductor wafer that forms an electric current that is positive on one side and negative on the other. When light energy hits the solar panel, electrons are knocked loose from the atoms in the semiconductor material. If electrical conductors are attached to the positive and negative sides, they form an electrical circuit for electricity to flow to an electrical load such as a light or computer.

Issues

With the large increase in expected solar installations in Illinois and beyond over the next several years, what happens to these panels if they are damaged or when they reach the end of their design-life? While some of them are being repurposed or recycled, many are ending up in landfills. However, landfill disposal may not be the best use of human and natural resources. The International Renewable Energy Agency (IRENA) estimates that by 2050, there will be 60 to 78 million cumulative metric tons of solar panel waste globally. Careful deconstruction of this waste is essential to recover component toxics (cadmium, lead) and valuable metals (silver, iridium, gallium) that otherwise would be landfilled, which prevents possible contamination of water and air systems through leaching and open burning, respectively.

In addition, recyling solar panels allows the opportunity to recover metals, such as silver, aluminum, silicon, and gallium, that would otherwise have to be extracted. In fact, it takes a lot of work to extract gallium because it is not found as a free element in nature. It exists only in trace amounts of various compounds such as zinc or aluminum ores.

Law & Policy – Planning for the Future

There is a bright side to all of this: the value of the recovered materials from solar panel recycling and reuse could be over $15 billion by 2050. Furthermore, many countries have thought about what to do with damaged and or end-of-life solar panels.Some governments have already created laws, while others are in the process of doing so. The European Union (EU) passed a law that requires all producers who sell solar panels in the EU to pay the costs of collecting and recycling panels.

In the U.S., there are no federal laws for solar panel disposal, but the Solar Energy Industries Association (SEIA) is working to establish a national network of certified solar recyclers. Additionally, the State of Washington requires solar manufacturers that sell in Washington to finance the upfront costs of collecting and recycling the panels. The state of New York is in the process of writing a law that will allow the Department of Environmental Conservation (DEC) to work with manufacturers to create a program to help with the collection, transportation, recycling, and disposal of used solar panels. This program would be funded by the manufacturers.

As of 2018, Illinois does not have solar panel recycling regulations. The Illinois Sustainable Technology Center is working with the Illinois EPA, Illinois Solar Energy Association, SEIA, and recycling companies to create a solar panel recycling network. On July 18, 2018, ISTC staff, Nancy Holm and Jennifer Martin, will be at a SWANA Illinois meeting presenting a joint talk about how to make the emerging solar panel market in Illinois more sustainable through recycling.

Advancing Carbon Capture Technology

WRITTEN BY: Lisa Sheppard, PRI staff, and Nancy Holm, ISTC staff

 

Research is progressing on a novel biphasic solvent absorption method that holds promise as an innovative, cost-saving alternative to the conventional CO2 capture process in power plants. ISTC researchers have been assisting the Illinois State Geological Survey (ISGS) on a lab-scale (10KWe) project developing a biphasic CO2 absorption process (BiCAP) with multiple stages of liquid-liquid solvent phase separation, which improves CO2 absorption kinetics and increases the carbon capture capacity.

 

“And, more importantly,” explained Wei Zheng, senior research chemist at ISTC who is working on the project, “this new technology can also significantly reduce both the energy use and equipment cost for CO2 capture compared to the conventional amine-based process.”

 

The lab-scale research is being led by ISGS, supported by a grant from U.S Department of Energy (DOE).

 

Currently, the team has evaluated the corrosive properties of solvents on carbon and stainless steel, which are main materials used for CO2 absorbers and strippers. “Corrosion is not a concern,” said ISTC senior research engineer Brajendra Sharma. “We’re moving forward with the project and are on track with all our milestones.”

 

Now the research efforts are ready for the next step.  Recently U.S. DOE announced $3M of additional funding for ISGS and ISTC to conduct a three-year bench-scale (40KWe) study of their BiCAP technology.

 

The primary goal of this new project is to leverage the BiCAP process and validate its technical advantages through a fully-integrated bench-scale testing in a relevant flue gas environment. The proposed technology is aimed at achieving a CO2 capture cost of $30/tonne and >95% CO2 purity to meet DOE’s Transformational CO2 Capture goals.

 

Read more about the biphasic project on ISTC’s website.

Mr. Grinch says ‘demand fast, free shipping at all times’

free two-day shipping
Two-day free shipping is shifting competition toward more speed. But is it the green thing to do?

What a wonderful world when we can shop online and get free two-day shipping.

 

What could be better?

 

From a climate perspective, perhaps slower is better.

 

More than thirty years of engineering have made passenger cars highly efficient and clean burning. That trip to the local store might have a smaller footprint than that uber-delivery to your door. Diesel trucks are lightly regulated and impact air quality more.

 

Experts at the University of California say today’s competition to get it to you fastest is eroding the logistical progress they had made in consolidating their shipments.
Grist explains some of the complexities of shipping that determine the carbon-intensively of your shipping choice. All of those individual shipping boxes have also been implicated for their impacts.

 

MIT’s 2013 analysis concludes that you’ll impact the planet least if you shop completely online, without going to the store to field test your purchase.

 

But now there is the added variable of free two-day shipping? Just because it is free you don’t have to choose it, according to Miguel Jaller, of the Institute for Transportation Studies at the University of California Davis. Consolidate your own purchases and choose a slower delivery option — that gives shippers the best chance of consolidating their shipments. Happy Holidays!

Jobs and growth can help halt greenhouse gas

Experts worldwide are meeting this week in Calabria, Italy to focus on ways to deploy carbon dioxide capture, utilization, and storage (CCUS) technologies.

Kevin OBrien
Kevin OBrien, director of ISTC and interim director of ISWS, at CO2 Summit III in Calabria, Italy.

Today Kevin OBrien, who leads both the Illinois Sustainable Technology Center and the Illinois State Water Survey, spoke about the opportunities to treat “CCUS as a Regional Economic Development Tool.”

The presentation was made at the CO2 Summit III: Pathways to Carbon Capture, Utilization, and Storage Deployment conference.

Reducing CO2 emissions while also maintaining economic growth requires balancing many complex technological, political, and social aspects, according to OBrien.

Deployment will bring significant implications for regional energy, water, and transportation, he said. By focusing on job growth and community resilience, OBrien said, CCUS can draw on, and build on, regional alliances for education, business, and community development.

The Prairie Research Institute, through its Illinois State Geological Survey and ISTC, have become leaders in the development and implementation of carbon capture and storage. ISTC is also developing a Center for Carbon Utilization on the University of Illinois campus.

“The goal is to not only evaluate technologies, but also demonstrate how communities may be able to monetize captured CO2,” said Kevin OBrien. The effort provides a unique opportunity to create jobs and build new markets, he said.

conference participants
CCUS experts from around the world gathered in Calabria, Italy this week to explore ways to speed the implementation of carbon capture, utilization, and storage.

Army to pilot ISTC innovation to improve installation resilience, energy security

waste water treatment plant energy recovery
The U.S. Army will pilot a U of I waste to energy system that converts wastewater biosolids to biocrude oil. The design benefits include removal of many bioactive pollutants and a high efficiency of energy extraction.

 

The U.S. Army has funded a project to demonstrate technology developed on the University of Illinois’ South Farm that disposes of wastewater biosolids by turning them into energy.

 

The Army has embraced a range of innovations in its Net Zero program, which strives for zero waste and clean, on-site, renewable energy sources. Two areas where the Army still pays for landfill disposal are food waste and wastewater biosolids.

 

The U of I system will be demonstrated over a two-month period at Fort Detrick, in Frederick, Maryland, where Net Zero team members will document the effectiveness of this approach to improve the environmental footprint and enhance resiliency at Army installations. Fort Detrick has been designated to be an Army pilot installation for Net Zero energy and waste initiatives.

 

The pilot-scale reactor developed by university personnel from Agricultural and Biological Engineering and the Illinois Sustainable Technology Center (ISTC), a division of the Prairie Research Institute, converts these organic materials into biofuels through a hydrothermal process.

 

Instead of expending energy to sterilize and break down organic wastes for landfilling, the one ton per day reactor can produce 3 million BTUs of heat energy, which corresponds to 300 kilowatt-hours of electricity each day. In addition, instead of expending energy to dry the feedstocks, as in most biofuel processes, wet feedstocks are essential to the reaction.

 

“In a hostile theatre, it is dangerous to supply fuel by truck to run electric generators,” said Lance Schideman, the researcher who has led the development efforts at ISTC. “The ability to supply renewable energy on-post promotes readiness and minimizes its environmental impact,” he added.

 

“The system’s small size and portability also make the approach appealing for deployment at military installations here and abroad,” said Stephen Cosper, an engineer with the Army’s Construction Engineering Research Laboratory who has spent a sabbatical year collaborating with researchers at ISTC.

 

Challenges of Carbon Utilization Have Regional Solutions

istc director kevin o'brien speaks at technology summit in San Antonio Texas
Advances in carbon utilization technology holds diverse options for job and economic development, according to ISTC Director Kevin O’Brien.

Emerging technologies for carbon dioxide (CO2) utilization present significant opportunities for job creation and economic growth, said Kevin O’Brien, director of the Illinois Sustainable Technology Center (ISTC), a division of the Prairie Research Institute at the University of Illinois at Urbana-Champaign, in a presentation to the Eighth Carbon Dioxide Utilization Summit Feb. 22 in San Antonio, Texas.

 

But success in deriving those benefits from carbon utilization depends on the assets (economic and human) of each particular region, O’Brien emphasized to energy, chemical, plastics, and construction industry leaders at the conference.

 

Mature regional partnerships for workforce development, higher education, economic development, government support, and responsive research and development capabilities are some of the factors that contribute to development of a sustainable CO2 value chain.

 

O’Brien pointed to reasons why Illinois, where coal underlies nearly the entire state and remains a $2.5 billion annual industry, is seizing on every advantage it has to align with the potential of carbon utilization innovations.

 

  • Illinois research universities have leading programs in engineering, engineering geology, carbon capture, and other scientific innovation. One example is the use of CO2 as a fertilizer substitute at the University of Illinois. In a major agricultural state with nutrient loss problems and where the climate is expected to reduce carbon retention in soil, synergies abound.
  • College curricula, community colleges, economic development professionals, political leaders, and employers are already connected to existing supply chains.
  • The University of Illinois’ Prairie Research Institute, ISTC’s parent organization, has assembled decades-long reservoirs of valuable data on Illinois weather, regional climate, soil, groundwater, stream flow, and other factors that is relevant to an economic pivot toward carbon utilization.

 

On the research front, a Midwest Regional Approach to Carbon Utilization workshop is being planned for June 28 by co-organizers ISTC, the Gas Technology Institute, and the Advanced Coal and Energy Research Center of Southern Illinois University-Carbondale.

 

Other regions will have different assets and opportunities. For instance, carbon utilization will necessitate pipelines or another cost-effective transportation method for captured CO2. Markets with a track record for facilitating transportation will be ahead of the game, O’Brien said.

Electric Coops Seek Veterans for Skill Positions

Serve our co-op serve our country logoThe National Rural Electric Cooperative Association (NRECA) has job openings and wants America’s veterans to apply.

The organization’s “Serve Our Coops/Serve Our Country” initiative has established a website to tap into the skills of armed forces veterans to join the energy sector.

Across the nation, 750 electric distribution cooperatives anticipate the need for 15,000 workers. They seek various skills for electrical and mechanical engineers; network administrators and specialists, cyber security IT specialists; marketing; accounting and finance; human resources; GIS supervisors and technicians; generation/transmission dispatchers; electric linemen and many others.

The program is focused on supporting member coops with work force education and training and to care for the veteran communities that live in suburban and rural areas.

In Race to Capture Carbon Dioxide, Remember the Need to Use It

Kevin O'Brien at the International Conference on Greenhouse Gas Technologies
ISTC Director Kevin O’Brien spoke in Lausanne, Switzerland today on the importance of developing new uses for ‘waste’ carbon dioxide.

The capture and utilization of CO2 provides a unique opportunity to create jobs and build new markets. Illinois is leading this charge, said ISTC Director Kevin O’Brien today in a presentation at the International Conference on Greenhouse Gas Technologies (GHGT-13) in Lausanne, Switzerland.

 

While research on economical technologies to capture and store CO2 is a priority at the University of Illinois and around the world, it is equally important to develop new approaches to monetize and utilize the gas as a commodity, O’Brien said.

 

He outlined the Carbon Dioxide Utilization and Reduction (COOULR) Center being formed at the University’s Prairie Research Institute. He called this effort a model for other communities committed to creating jobs and accelerating economic engines.

 

The University’s openness to discovery and innovation, coupled with the U of I’s interest in becoming carbon neutral by 2050 makes for a fortunate confluence of factors. “There is a need to be able to explore a multitude of utilization approaches in order to identify a portfolio of potential utilization mechanisms,” he said. “This portfolio must be adapted based on the economy of the region.”

 

The Carbon Dioxide Utilization and Reduction (COOULR) Center being formed at the University's Prairie Research Institute.
The Carbon Dioxide Utilization and Reduction (COOULR) Center being formed at the University’s Prairie Research Institute is intended to be a model for other communities to explore new uses for captured CO2.

A research effort like the COOULR Center “is one of the key steps in the formation of a market for captured CO2,” he added. “The goal of the Center is to not only evaluate technologies, but also demonstrate at a large pilot scale how communities may be able to monetize captured CO2.”

 

The GHGT Conference is held every two years by the International Energy Agency‘s (IEA) Greenhouse Gas R&D Programme. The IEA consists of the U.S. and 28 other industrialized nations that work to ensure reliable, affordable and clean energy supplies.

 

Co-authors of the paper delivered by O’Brien are: Yongqi Lu, Sallie Greenberg, Randall Locke (Illinois State Geological Survey); Vinod Patel (ISTC); Michael Larson (U of I’s Abbott Power Plant); Krish R. Krishnamurthy, Makini Byron, Joseph Naumovitz (Linde LLC); and David S. Guth, Stephen J. Bennett (Affiliated Engineers Inc. (AEI)). The university team and the private partners are currently involved in major research projects to test advanced carbon capture systems at the University’s power plant.